
Categorial Dependency Grammars: from Theory to Large Scale
Grammars

Alexander Dikovsky
LINA CNRS UMR 6241, Université de Nantes

Alexandre.Dikovsky@univ-nantes.fr

Abstract

Categorial Dependency Grammars
(CDG) generate unlimited projective
and non-projective dependency struc-
tures, are completely lexicalized and
analyzed in polynomial time.

We present an extension of the CDG,
also analyzed in polynomial time and
dedicated for large scale dependency
grammars. We define for the extended
CDG a specific method of “Structural
Bootstrapping” consisting in incremen-
tal construction of extended CDG from
representative samples of dependency
structures. We also outline a wide cov-
erage dependency grammar of French
developed using this method.

1 Introduction

Categorial Dependency Grammars (CDG) were
introduced in (Dikovsky, 2004). Since then,
they were intensively studied (e.g., see (Béchet
et al., 2004; Dekhtyar and Dikovsky, 2008;
Dekhtyar et al., 2010)). CDG is very expres-
sive. In particular, simple CDG generate such
non-CF languages as L(m) = {an1an2 ...anm || n ≥
1} for all m > 0 and MIX = {w ∈ {a, b, c}+ ||
|w|a = |w|b = |w|c}. At the same time, CDG
are recognized in polynomial time. CDG have
interesting mathematical properties: an ex-
tension of CDG defines an Abstract Family
of Languages (AFL) (Dekhtyar and Dikovsky,
2008; Dekhtyar et al., 2010)1, they are equiv-
alent to real time pushdown automata with
independent counters (Karlov, 2008), interest-
ing sufficient conditions of learning CDG in
the limit were recently found (Béchet et al.,
2004; Béchet et al., 2010; Béchet et al., 2011).

1CDG-languages are closed under all AFL opera-
tions, but iteration.

(and all of a sudden he appears foremost)

Figure 1: Projective DS

At the same time, the exact relationship be-
tween the weak generative power of the CDG
and that of the so called mildly context sen-
sitive grammars (see e.g. (Joshi et al., 1991;
Shanker and Weir, 1994)) is not known.

CDG have important advantages which
make them a convenient and natural means of
definition of wide-coverage dependency gram-
mars. First, they are completely lexicalized,
as it is the case of all categorial, and more
generally, type logical grammars (Bar-Hillel
et al., 1960; Lambek, 1961; Lambek, 1999;
Steedman, 1996). The second advantage of
CDG is that they naturally and directly ex-
press unlimited dependency structures (DS).
Basically, CDG define DS in terms of valen-
cies of words, i.e. in terms very close to those
of the traditional linguistic theories of syntax.
Of course, as all dependency grammars (e.g.
(Gaifman, 1961; Maruyama, 1990; Sleator and
Temperly, 1993; Debusmann et al., 2001)),
they express the projective DS, i.e. those
in which the dependencies do not cross (as
the one in Fig. 1). But they express as well
the non-projective DS, in which they may
cross (as in the DS shown in Fig. 2). Non-
projective DS are a challenge for dependency
grammars. Generally, the grammars express-
ing them are untractable (cf. (Debusmann et
al., 2001)) or need some constraints on the DS
in order to be polynomially analyzed (cf. (Ka-

262

(∗she it[fem.] to him has given)

Figure 2: Non-projective DS

hane et al., 1998; Bröker, 2000)). As to the
CDG, they are analyzed in a reasonable poly-
nomial time using a rather standard tabular
dynamic programming algorithm (see (Dekht-
yar and Dikovsky, 2008)), and this is their
third advantage. Fourth, an extension of CDG
by regular type expressions (RTE) specially de-
signed for large scale grammars was proposed
in (Dikovsky, 2009). We outline this extension
below. Importantly, the extended CDG are
also analyzed in polynomial time.

In this paper we define a simple and prac-
tical Structural Bootstrapping Method of
incremental development of large scale ex-
tended CDG from representative samples of
DS. Using this method and a toolkit spe-
cially designed for CDG (Alfared et al., 2011),
we have developed in a short space of time
a rather complete dependency grammar of
French, briefly described below.

The plan of this paper is as follows. The
next Section introduces the CDG. Section 3
presents their extension by RTE. In Section 4
is defined and illustrated the Method of Struc-
tural Bootstraping of extended CDG. Finally,
a wide scope extended CDG of French devel-
oped by this method is outlined in Section 5.

2 Categorial Dependency Grammars

CDG originate from a straightforward encod-
ing of DS in terms of dependency relation va-
lencies of words. Basically, they are classi-
cal categorial grammars with subtypes inter-
preted as dependency valencies and with cat-
egories extended by potentials defining non-
projective dependencies. Valencies of projec-
tive and of non-projective dependencies are en-
coded differently.

When in a DS D there is an arc w1
d−→ w2,

we say that d is a dependency between w1 and
w2, w1 is the governor and w2 is subordinate

(he passed by her side several times)

Figure 3: Repetitive dependency circ

to w1 through d. E.g., in Fig. 1, il (he) is sub-
ordinate to apparâıt (appears) through pred
and the locative case preposition à governs
place through dependency prepos−l.

The valency of a governor of w through de-
pendency d is encoded by d itself. In particu-
lar, the no-governor valency of the root word is
encoded by S (a special symbol called axiom).

The valency of a left subordinate of w
through projective dependency l is encoded
by l\ and that of a right subordinate through
projective dependency r is encoded by /r.
The set of all left valencies of a word is en-
coded by the concatenation of their codes. So,
for instance, the valencies of projective de-
pendencies of the root word apparâıt in the
DS in Fig. 1 is encoded by the expression
pred\circ\emphat\S/@fs/l−obj.

The repetitive dependencies are a spe-
cial case. A dependency d is repetitive

(see (Mel’čuk, 1988)) if a word may have more
than one subordinates through d. The valency
of left repetitive dependency d is encoded by
d∗\ (the right one is encoded by /d∗. So, e.g.
in the DS in Fig. 3, the valencies of projective
dependencies of the word passé (passed) are
encoded by the expression aux/circ∗.

In CDG, the non-projective dependency va-
lencies of a word w are polarized. They
are of four kinds: ↙ v, ↘ v (negative) and
↖ v, ↗ v positive. E.g., wnen a word w
has valency ↙ v, it intuitively means that
its governor through dependency v must oc-
cur somewhere on the right. Two polarized
valencies with the same valency name v and
orientation, but with the opposite signs are
dual. Together they define non-projective de-
pendency v. The (possibly empty) set of all
non-projective dependencies of a word w is en-
coded by the concatenation of the correspond-

263

[pred]

[#(↙clit−a−obj)]↙clit−a−obj

[#(↙clit−3d−obj)]↙clit−3d−obj [#(↙clit−3d−obj)\#(↙clit−a−obj)\pred\S/aux−a−d]
(Ll)

[#(↙clit−a−obj)\pred\S/aux−a−d]↙clit−3d−obj

(Ll)
[pred\S/aux−a−d]↙clit−a−obj↙clit−3d−obj

(Ll)
[S/aux−a−d]↙clit−a−obj↙clit−3d−obj [aux−a−d]↖clit−3d−obj↖clit−a−obj

(Lr)
[S]↙clit−a−obj↙clit−3d−obj↖clit−3d−obj↖clit−a−obj

(Dl × 2)
S

Figure 4: Dependency structure correctness proof

ing polarized valencies called potential of w.2

E.g., in the DS in Fig. 2, the participle donnée
has potential ↖ clit−a−obj ↖ clit−3d−obj,
which means that it needs, somewhere on its
left, a word subordinate through dependency
clit−a−obj and also another word subordi-
nate through dependency clit−3d−obj. At
the same time, the accusative case clitic la
(it[fem.]) has potential ↙ clit−a− obj and
the dative case clitic lui (to him) has poten-
tial↙clit−3d−obj. The proper pairing of these
dual valencies with those of the participle de-
fines two non-projective dependencies between
the participle and its cliticized complements.

The expression
t = [lm\ . . . l1\h/r1 . . . /rn]P

(m,n ≥ 0) is called a type of a word w if:
(i) lm\ . . . l1\ and /r1 . . . /rn encode respec-
tively left and right projective dependency va-
lencies of w,
(ii) h is a governor (no-governor) valency and
(iii) P , the potential of w, encodes its valen-
cies of non-projective dependencies.
lm, . . . , l1 are left subtypes of t, r1, . . . , rn
are its right subtypes and h is its head

subtype.

Below we use CDG with non-empty head
subtypes. When a type [α\d/β]P has a nega-
tive valency in its potential P , say P =↙vP ′,
the word w with this type has two governors:
one through v, the other through d. In such
cases we use special head subtypes d = #(A),
called anchors, to express the adjacency of w
to a host word w0. The anchor dependencies
are displayed below the sentence for a better
readability. E.g., the DS in Fig. 2 is defined
by the following assignment of types to words:
elle 7→ [pred],
la 7→ [#(↙clit−a−obj)]↙clit−a−obj ,
lui 7→ [#(↙clit−3d−obj)]↙clit−3d−obj ,
donnée 7→ [aux−a−d]↖clit−a−obj↖clit−3d−obj ,
a 7→ [#(↙clit−3d−obj)\#(↙clit−a−obj)\pred

\S/aux−a−d].
Due to the anchor subtypes #(↙clit−3d−obj),

#(↙clit−a−obj) in the type of the auxiliary
verb a (has), it serves as the host verb for
both clitics and also defines their precedence
order. Derivability of DS in CDG is formal-
ized through the following calculus 3 (with C
being a dependency, H being a dependency or
an anchor and V being a polarized valency):
Ll. HP1 [H\β]P2 ⊢ [β]P1P2

Il. CP1 [C∗\β]P2 ⊢ [C∗\β]P1P2

Ωl. [C∗\β]P ⊢ [β]P

Dl. αP1(↙V)P (↖V)P2 ⊢ αP1PP2 , if the poten-
tial (↙V)P (↖V) satisfies the following pair-
ing rule FA (first available):4

FA : P has no occurrences of ↙V,↖V.
Ll is the classical elimination rule. Eliminat-
ing the argument subtype H ̸= #(α) it con-
structs the (projective) dependency H and
concatenates the potentials. H = #(α) cre-
ates the anchor dependency. Il derives k > 0
instances of C. Ωl serves for the case k = 0. Dl

creates non-projective dependencies. It
pairs and eliminates dual valencies with name
V satisfying the rule FA to create the non-
projective dependency V.

In Fig. 4 we show a proof of correctness of
DS in Fig. 2 with respect to the type assign-
ment shown above.
A CDG G is defined by its dictionaryW and

its lexicon λ, an assignment of finite sets of
types to words in W . G defines a DS D of a
sentence x = w1 . . . wn and x is generated by
G (denoted D ∈ ∆(G) and x ∈ L(G)) if it is
possible to assign through λ a type ti to ev-
ery word wi so that the obtained type string
t1 . . . tn were reducible to the axiom S. L(G)
is the language and ∆(G) is the structure

language generated by G.

2Their order is irrelevant (so one may choose a stan-
dard lexicographic order).

3We show left-oriented rules. The right-oriented
rules are symmetrical.

4Cf. a different pairing rule in (Dikovsky, 2007).

264

V t(F = fin, C = a) 7→ {pred?, neg?, vocative?,#(↙explet)?, circ∗}[{lpar?,#(↙coref)?,#(↙select)?}
\(#(↙compos−neg)|#(↙restr−neg)|#(↘compos−neg)|#(↘restr−neg))? \interrog?\emphat?\S/
(#(↘fs)|#(↘qu)|#(↘xl))/coordv∗/(a−obj|claus|pre−inf |inf)?/{rpar?,#(↘modif)?,#(↘attr)?,
#(↘appos)?,#(↘dist−rel)?,#(↘aggr)?}]

Figure 5: A RTE for transitive French verbs

3 Extended CDG

CDG is a theoretical model not adapted for
wide coverage grammars. The main problem
with wide coverage is the excessive sharing of
subtypes in types. For lexicons running to
hundreds of thousands of lexical units it re-
sults in a combinatorial explosion of spurious
ambiguity and in a significant parsing slow-
down. Wide coverage grammars face many
hard problems, e.g. those of compound lexical
entries including complex numbers, compound
terms, proper names, etc. and also that of flex-
ible precedence order. An extension of CDG
well adapted for wide coverage grammars is
proposed in (Dikovsky, 2009).

The extended CDG use classes of words in
the place of words and use restricted regular
expressions defining sets of types in the place
of types. I.e., the dictionary W is covered by
classes: W =

∪
i∈I

Ci and the lexicon λ assigns

sets of regular expressions to classes. At that:
- all words in a class C share the types de-

fined by the expressions assigned to C,
- every word has all types of the classes to

which it belongs.

The regular type expressions (RTE) we
describe below are flat (i.e. bounded depth).
In these expressions, C,Ci are dependency
names or anchors, B is a primitive type, i.e.
a dependency name, or an anchor or an iter-
ated or optional type, and H is a choice.
Choice: (C1| . . . |Ck); (C)=df C
Optional choice: (C1| . . . |Ck)?; (C)?=df C?
Iteration: (C1| . . . |Ck)

∗; (C)∗=df C
∗

Dispersed subtypes expressing flexible order.

Left: [{α1, B, α2}\α\H/β]P

Right: [α\H/β/{α1, B, α2}]P

Two-way: {α1, B, α2}[α\H/β]P

Here is a fragment of the extended calculus:
1. Choice rules:
LCl. CP1 [(α1|C|α2)\β]P2 ⊢ [β]P1P2

ICl. CP1 [(α1|C|α2)
∗\β]P2 ⊢ [(α1|C|α2)

∗\β]P1P2

ΩCl. [(α1|C|α2)
∗\β]P ⊢ [β]P

(DCl is as Dl in the CDG calculus).
2. Dispersed subtypes rules:
LDl. HP1 [{α}\H\β/{γ}]P2 ⊢ [{α}\β/{γ}]P1P2

IDl. CP1 [{α1, C
∗, α2}\β/{γ}]P2 ⊢

[{α1, C
∗, α2}\β/{γ}]P1P2

ΩDl. [{α1, C
∗, α2}\β/{γ}]P ⊢ [{α1, α2}\β/{γ}]P

(DDl as Dl in the CDG calculus).

E.g., the rule IDl intuitively says that
the dispersed iterated subordinates through C
may be found in any position at the left of the
governor with type [{α1, C

∗, α2}\β/{γ}]P2 .

Fig. 5 shows an example of one of RTE as-
signed to the class V t(F = fin,C = a) of
French transitive verbs in finite forms. It de-
fines the simplest case where the complement
is niether fronted nor cliticized. E.g., it states
that the subject (subordinate through pred)
may occur at the left or at the right of the
verb, whereas the (exactly defined) position of
the direct object (subordinate through a−obj)
is at its right, and in the same position may be
found a subordinate clause and a prepositional
or preposition-less infinitive phrase.

The RTE and the classes do not extend
the expressive power of CDG. At the same
time, they dramatically reduce the grammar
size. Sure, the unfolding of an extended CDG
may exponentially blow up its size. However,
due to the extended type calculus the polyno-
mial time parsing algorithm of (Dekhtyar and
Dikovsky, 2008) can be adapted to parse them
directly, without unfolding. So the RTE are
well adapted for large scale grammars. But
still more, they are also ment for incremental
bootstrapping of extended CDG from DS.

4 Structural Bootstrapping

In (Béchet et al., 2010; Béchet et al., 2011), it
is proved that, in contrast to the constituent-
structure grammars, even the projective CDG
assigning one type per word cannot be learned
from the DS they generate. This means that
CDG cannot be automatically computed from
dependency treebanks. The reason is that
they express repeatable dependencies through
iteration (and not through recursion). In these

265

Figure 6: DS of (s1)

papers are also defined and proved algorithms
which learn from DS some subclasses of ex-
tended CDG, under reasonable conditions on
the use of iteration. These partial solutions
are still far from being practical. Below we
present an intuitive heuristic method of con-
struction of extended CDG from DS.

This method, we call structural

bootstrapping, consists in that an ex-
tended CDG is incrementally constructed
from a sample of DS, element by element.
Ideally, the sample should be representative
with respect to the surface syntax of the lan-
guage. We suppose that the extended CDG is
defined as G = (W,D,V, S, λ), where W is its
dictionary with a classification W =

∪
i∈I

Ci, D

is the set of dependency names, V is the set
of valency names, S is the axiom and λ is the
lexicon.

The method is based on a genericity partial
order (PO) ≼ on extended CDG, compatible
with the inclusion of DS-languages: G ≼ G′ ⇒
∆(G) ⊆ ∆(G′). ≼ is the closure by reflexivity,
transitivity and by type construction of the
following basic PO (below t is a subtype, X is
a list of alternatives and (t)=df t):
1. t . (t|X)
2. (t|X) . (t|X)?
3. (t|X)? . (t|X)∗

4. {γ}[{γ1}\t\β]P . {γ}[{t, γ1}\β]P
5. {γ}[{t, γ1}\β]P . {t, γ}[{γ1}\β]P
(similar for right subtypes)
6. {γ}[α/{t, γ1}]P . {t, γ}[α/{γ1}]P .

Basically, the Structural Bootstrapping
Method consists in extracting from the sam-
ple DS the vicinities of words and in merging
them into minimally generalized RTE of the
preceding grammar. By vicinity of a word
w in a DS D we mean the maximal subgraph
V (w,D) of D with the nodes {w,w1, . . . , wm},
w1, . . . , wm being the subordinates of w in D.
Here is a schematic description of the method.

Figure 7: DS of (s2)

Structural Bootstrapping Method:
Input: Extended CDG Gin;

DS Dx of a sentence x //next DS.
Output: Extended CDG Gout generating Dx.
let Gin = (W,C,V, S, λ) where W =

∪
i∈I

Ci;

if (Dx ∈ ∆(Gin))
then Gout = Gin

else
for every word w ∈ x

if (w ∈ W)
then select a class C such that w ∈ C;
else select a class C and add w to C
end;
find the vicinity V (w,D);
if (V (w,D) is generated by a RTE

t ∈ λ(C))
then λ′(C) = λ(C)
else select RTE t ∈ λ(C);

find minimal RTE t′ ≻ t
generating V (w,D);
set λ′(C) = (λ(C)− {t}) ∪ {t′},
λ′(C1) = λ(C1) for every C1 ̸= C

end
until Dx ∈ ∆((W,C,V, S, λ′))

end;
return Gout = (W,C,V, S, λ′)

Let us see how may evolve RTE of tran-
sitive verbs. Suppose that the class
V t(F = fin, C = a) contains the verbs
tenait (took), toucheras (will get, when
applied to wages) and mettrait (might put).
This is how the Structural Bootstrapping
Method might change this class when applied
to the following sample of sentences:
(s1) Marie tenait fort sa tasse. (Mary held
tight her cup.)
(s2) Demain tu toucheras ta paie.
(Tomorrow you will get your wage.)
(s3) Où mettrait−elle la clé? (Where might
she put the key?)

From the DS of (s1) in Fig. 6 we have:

V t(F = fin, C = a) 7→
[pred\S/@fs/a−obj/circ].

The DS of (s2) in Fig. 7 induces the follow-
ing generalization:

266

Figure 8: DS of (s3)

V t(F = fin,C = a) 7→
{circ∗}[pred\S/@fs/a−obj].

Finally, from the DS of (s3) in Fig. 8 we
obtain a still more general RTE:

V t(F = fin,C = a) 7→
{pred, circ∗}[S/(@fs|@qu)/a−obj].

In practice, the RTE generalization effected
by the main operation:
find minimal RTE t′ ≻ t generating V (w,D)
carries over to all other RTE t′′ ∈ λ(C) rep-
resenting the same syntactic function as t in
a compatible local context. E.g., the subject
inversion as in (s3) may also be applied to the
RTE defining the coordinated clauses, but not
to that defining the parenthetical clauses.

To see that this method is incremental, we
should extend the partial order of generaliza-
tion ≼ to the extended CDG:
1. τ ≼ τ ′ for sets of RTE τ, τ ′, if either:
(i) τ ′ = τ ∪ {t} for a RTE t /∈ τ or
(ii) τ = τ0 ∪ {t′} and τ ′ = τ0 ∪ {t′′}

for a set of RTE τ0 and some RTE t′, t′′ such
that t′ ≼ t′′.

2. λ ≼ λ′ for two RTE assignments λ
and λ′, if λ(C ′) ≼ λ′(C ′) for a class C ′ and
λ(C) = λ′(C) for all classes C ̸= C ′.
3. ≼gener is the genericity PO which is the

reflexive-transitive closure of the PO ≼ .
4. For CDG G1 with lexicon λ and G2 with

lexicon λ′, G1 ≼gener G2 if λ ≼ λ′.

Now, it is not difficult to see the incre-
mentality of this method in the sense that, if
G1 ≼gener G2, then ∆(G1) ⊆ ∆(G2).

Application of the Structural Bootsrapping
Method in practice needs several resources.
First of all, being applied directly as it is de-
fined above, the method will always give gram-
mars with a lexicon limited to that of the sam-
ple of representative sentences. So one should
choose a morpho-syntactically annotated dic-
tionary of the language (MS-dictionary) and
to integrate it into the grammar establishing a

correspondence between its categories and the
grammar’s classes. Besides this, it is needed
an efficient parser complete with respect to the
class of all extended CDG.

5 Bootstrapping of a Wide Coverage
CDG of French

The Structural Bootstrapping Method was
applied to develop a wide coverage extended
CDG of French. Its kernel part (Version
1) was bootstrapped from about 400 French
sentences during half a year. In this phase, the
method was applied completely incrementally.
Then, after two months’ long joint work with
two colleagues, this grammar was integrared
with the freely available MS-dictionary of
French Lefff 3.0 (Sagot, 2010) containing
536,375 entries corresponding to 110,477 lem-
mas. The transition to this integrated Version
2 was non-monotone because the initial lexical
classification was to be adapted to Lefff 3.0
and also because of a reorganization of prepo-
sitional dependencies. In Version 1 we more
or less followed the so callled “pronominal
approach” (see (van den Eynde and Mertens,
2003)), but finally we have passed to a system
of pronominal and prepositional dependencies
based on the case of pronouns. The Version 2
incrementally evolved to Version 3 into which
were introduced various more peripheral
“small syntax” constructions extracted from
DS of about 200 more French sentences.
The last two non-monotone updates of the
grammar gave the Versions 3.1, 3.2. They
were due to a reorganization of verbal RTE,
leading to a simple and symmetrical system
of negation dependencies and of parenthetical
clauses. Basically, the bootstrapping process
has stabilized already on Version 2. Till then
the grammar keeps the main body of its RTE.

Version 3.2 of the CDG of French covers the major
part of French syntax including:

- negation, the main binary negation: ne . . . pas |
jamais | plus, ... and the ternary restrictive negation:
ne . . . que as in Eve n′a donné a Adam qu′une pomme
(Eve gave to Adam only one apple);

- reflexives and clitics: Les loups ne se dévorent
pas entre eux (The wolfs do not eat up one another),
see also the DS in Fig. 2;

- topicalized complements: À ces départs
s′ajoutent trois autres (To these departures are added
three more);

- clefting: C′ est très amicalement qu′Alain nous

267

Examples Classes Regular Expressions Dependencies
total verbal nominal projective non-projective

∼ 600 185 46 7 ∼ 3120 84(9 par) 20(3 par)

(where n(m par) means n of which m are parametrized)
Tab. 1. Parameters of the CDG for French constructed by bootstrapping

a reçu (It is very friendly that Alain has received us);

- subordinate and relative clauses: Maintenant,

tous les soirs, quand il l′avait ramenée chez elle, il

fallait qu′il entrât (Now, every evening, when he ac-

companied her home, he was obliged to enter);

- interrogative clauses, order inversion: Qui cela

aurait− il pu être? (∗Who this would it be ?);

- light verbs, e.g. Le laisser faire mal à ma soeur

était ma première erreur (To let him cause damage

to my sister was my first error);

- partial extraction from a compement: Il m′en

reste une très facile (I have one [fem.] more resting,

a very simple one);

- comparatives: Il est deux fois plus grand qu′elle

(He is twice as great as she);

- vocatives and co-reference: Ce truc, restons− en

là, Adam! (This matter, let us let it alone, Adam!),

- expletives: Un voleur, de temps en temps, ça se

repose (A thief, from time to time, it takes a rest);

- aggregation: Adam en a six ou sept rouges

(Adam has six or seven of them red);

- coordination with ellipsis: J ′ai reçu cette notice,

et lui non. (I have received this notice, and he not);

- extracted post-position modifiers: Le gros chat

tigré guette la souris, immobile et silencieux (The fat

stripy cat watched for a mouse, immovable and silent).

Table 1 shows some parameters of this
grammar. It has 185 classes 46 of which are
verbal, 7 are nominal, 9 are adjectival, 14 are
adverbial and in the rest there are the mul-
tiple classes of prepositions, pronouns, numer-
als, determiners, conjunctions, particles, collo-
cations and punctuation markers. The gram-
mar uses 104 dependencies 84 of which are pro-
jective and 20 are non-projective. In fact, their
number is greater because many of them are
parametrized. E.g., there are 6 non-projective
clitic dependencies↙clit−C−obj, in which C is
the person-case parameter (cf. ↙clit−3d−obj).
Let us see the grammar in more detail.

Main principles. 1. This grammar is in-
tended for analysis (not for generation) of cor-
rect sentences. So only the oppositions dis-
tinguishing between the dependency relations
and the order are taken into account. E.g.,

(Small [fem.], Alain considered her intelligent [fem.])

Figure 9: Consecutive discontinuities

the agreement in number and in gender do
not count, whereas the agreement in person
is partially used to define the order of clitics.
At the same time, the principle of minimality
of the set of oppositions (see (Mel’čuk, 1988;
Mel’čuk and Iordanskaja, 2000)) is abandoned
in favour of a better distributed dependen-
cies’ system and lexicon classification. E.g., in
the sentences like Petite, Alain la considérée
intelligente (see Fig. 9) is used the (rather
frequent) coreference dependency coref and
not the minimally opposed, but rare depen-
dency object−copredicative (from considérée
to Petite) used in (Mel’čuk and Iordanskaja,
2000).
2. The grammar is rather intended for the

development of French dependency treebanks,
so the completeness criterion is prevaling over
those of lower ambiguity and of more efficient
parsing.
3. Basically, the grammar respects the fun-

damental principle of the dependency gram-
mars (Kunze property): “words subordinate
through the same dependency and belonging
to the same grammatical category are substi-
tutable”5, but in the place of grammatical cat-
egories are considered the lexicon classes.
4. To reduce the ambiguity, a number of val-

ues are propagated through dependencies. For
instance, some dependencies are parametrized
by case. In French, only prepositions and pro-
nouns mark for case. So we define the case

5See (Mel’čuk, 1988) and (Mel’čuk and Iordanskaja,
2000) for a weaker version.

268

VERBAL DEPENDENCIES

Group Governor (G) Subordinate (D) Relation

PRED main verb subject predicative
AUX auxiliary verb past participle auxiliary

COPUL main verb noun / adjective / circumstantial copular
OBJ verb / noun / adjective complement objectival

AGENT past participle preposition (e.g. par) agentive
CLIT verb pre-position clitic clitic
NEG main verb ne negative
NEG ne pas, plus, etc. composite negative
NEG ne restrictive que retrictive negative
CIRC verb e.g., adverbs circumstantial

COORD verb verb verb coordination
CLAUS rel. pronoun / verb verb clausal

NOMINAL DEPENDENCIES

DET noun / adjective determiner determinative
MODIF noun adjective / past participle modifier
ATTR noun preposition attributive

QUANT noun numeral quantitative
REL noun pronoun relative

COMPAR noun junction / adj. comparative
COREF pronoun noun co-referential

RESTRICT noun que / adv. restrictive
APPOS noun noun / adj. appositive

Tab. 2. A sample of verbal and nominal dependency relations

indirectly: a noun has case C if it can be re-
placed (in the same position) by a pronoun
in case C without affecting the syntactic well-
formedness. We distinguish five cases: a (ac-
cusative), d (dative), g (genitive), l (locative)
and o (oblique, that of non-cliticizable com-
plements). Respectively, we parametrize the
objective dependency by the case of the sub-
ordinate complement, e.g. a−obj (direct ob-
ject), d−obj (indirect object), etc. Moreover,
when a word (e.g. an auxiliary verb) w serves
as the host word for a pronoun in case C1,
the dependency from w to a subordinate word
(e.g. a participle) is parametrized by C1. The
propagated parameters are used to prohibit to
the subordinate to have the same case comple-
ments in their standard position (e.g. being
subordinate through aux−a−d, the participle
donnée in Fig. 2 cannot have complements).

Lexicon classes. As explained above, every
class is defined, on the one hand, by a list of
forms belonging to the class (the correspon-
dence between the CDG classes and the Lefff
categories is external with respect to the gram-
mar), and on the other hand, by a set of RTE.
Each RTE defines a set of CDG types possi-
ble for the lexical units in the list. In all, the
French CDG, version 3.2 has about 3120 RTE.
E.g., the RTE in Fig 5 is one of 32 RTE defin-
ing the class V t(F = fin, C = a).

The grammar’s lexicon includes four fam-

ilies of verbal classes: auxiliary verbs V aux
(avoir, être), copulas V copul (e.g. être,
devenir), light verbs V light (e.g. faire,
laisser) and significant verbs V . Every
family has four subfamilies corresponding
to verb forms: F = fin (finite formes),
F = pz, T = pres (present participle),
F = pz, T = past (past participle) and
F = inf (infinitive). Finally, the signifi-
cant verbs are classified by their government
patterns, i.e. by the number of their
complements and by the complements’ case
(e.g. V 2t(F = fin, C1 = a,C2 = d)). Among
the nominal and adjectival classes there are
also those with genitive and dative argu-
ments. The prepositional classes are opposed
by the syntactic function of the prepositional
phrase (e.g., complement (infinitival or not),
circumstantial, attribute), and by case/role
(e.g. agent). Finally, there is a complex class
UT of unknown lexical units.

Inventory of dependencies. The main advan-
tage of the dependency syntax is that it is very
close to a semantic representation of sentences.
At that, dependency relations are numerous.
The dependency relations used in the gram-
mar are broken down into 39 groups:15 verbal,
14 nominal, 4 prepositional and several oth-
ers: of aggregation, expletive, emphatic, junc-
tion/punctuation and deictic. Some of them
are shown in Table 2.

269

(Never my people would do this)

Figure 10: Negation in pre-position

(It [fem.] had only two rooms)

Figure 11: Negation in post-position

Some dependency grammars and parsers
flatten and distort DS because they cannot ex-
press non-projective dependencies. Such de-
pendencies being not an obstacle for CDG,
the grammar Version 3.2 uses numerous non-
projective dependencies. Let us see the exam-
ple of negative dependencies (group NEG).

The negation in French consists of two
parts: the (main) categorematic part (pas,
plus, jamais, que, aucun etc.) and the
syncategorematic part ne. We distinguish
between the restrictive verbal negation
with the categorematic part que, aucun, etc.
and the binary verbal negation with the cat-
egorematic part other than que, aucun, etc.
because the latter is related through depen-
dencies only with the negated verb, whereas
the former is related not only with the verb,
but also with one of its complements. For both
kinds of negation, the categorematic part may
be found in pre- and post-position with respect
to the verb (cf. DS in Fig. 10 and 11).

Evaluation. The French CDG Version 3.2
was used to create an experimental depen-
dency treebank (DTB). Actually, this DTB con-
tains about 1500 DS. It was created within
three months with the help of the toolkit
CDG Lab (Alfared et al., 2011). The ana-
lyzed sentences originated from heterogeneous
sources: French grammar (Grevisse, 1993), lit-
erary prose (E.Zola, M.Proust, La Rochefou-
cauld), scientific prose, periodical press (cor-

pus Le Monde (Abeillé et al., 2003)), blogs,
publicity, spoken language. These sentences
vary from very short and simple to extremely
long and complex. Nearly 200 of them needed
application of the bootstrapping procedure in
order to complete the grammar (lexically or
syntactically or both). 42.8% of DS in the
constructed corpus are non-projective. Among
the non-projective dependencies used in these
DS the most frequent are not only the nega-
tive dependencies, but also the reflexive and
the clitic dependencies, as well as some nom-
inal non-projective dependencies (e.g. coref
and dist−rel). Other non-projective depen-
dencies are less frequent but are used in reg-
ular constructions, e.g. C−obg, modif , attr
(of topicalized complements, modifiers and at-
tributes), expletive (of parenthetical phrases)
and many other.

Parser. The CDG of French is parsed with a
special CDG-complete polynomial time sym-
bolic parser rather adapted to the parallel de-
velopment of the CDG of French and of DS
corpora. It computes, after every grammar
update, the scores of correctness of the gram-
mar with respect to a DS corpus and also sup-
ports a semi-automatic analysis by consecu-
tive approximations (see (Alfared et al., 2011)
for more details). A higher-performing au-
tonomous mixed stochastic-symbolic parser is
under design.

Conclusion

The extended CGD prove to be well adapted
for practical development of wide scope de-
pendency grammars and of dependency tree-
banks. Due to their formalization through the
extended type calculus, they allow to express
voluminous sets of types using well-structured
and succinct restricted regular type expres-
sions, and at the same time are analyzed in a
reasonable polynomial time. A specific Struc-
tural Bootstrapping Method based on a gener-
icity order on RTE and supported by a set of
appropriate and efficient tools allows to incre-
mentally develop in a relatively short space of
time large scale dependency grammars and de-
pendency treebanks provably correct with re-
spect to them.

270

References

A. Abeillé, L. Clément, and F. Toussenel. 2003. Build-
ing a treebank for french. In A. Abeillé, editor, Tree-
banks.

Ramadan Alfared, Denis Béchet, and Alexander
Dikovsky. 2011. “C DG Lab”: a Toolbox for Depen-
dency Grammars and Dependency Treebanks Devel-
opment. In Proc. of the Int. Conf. on Dependency
Linguistics (Depling’2011), Barcelona, Spain.

Y. Bar-Hillel, H. Gaifman, and E. Shamir. 1960. On
categorial and phrase structure grammars. Bull.
Res. Council Israel, 9F:1–16.

Denis Béchet, Alexander Dikovsky, Annie Foret, and
Erwan Moreau. 2004. On learning discontinuous
dependencies from positive data. In Proc. of the 9th
Intern. Conf. “Formal Grammar 2004” (FG 2004),
pages 1–16, Nancy, France.

Denis Béchet, Alexander Dikovsky, and Annie Foret.
2010. Two models of learning iterated dependencies.
In Proc. of the 15th Conference on Formal Gram-
mar (FG 2010), LNCS, to appear, Copenhagen,
Denmark. [online] http://www.angl.hu-berlin.
de/FG10/fg10_list_of_papers.

Denis Béchet, Alexander Dikovsky, and Annie Foret.
2011. On dispersed and choice iteration in incre-
mentally learnable dependency types. In Proc. of
the 6th Int. Conf. “Logical Aspects of Computa-
tional Linguistics” (LACL’2011), LNAI 6736, pages
80–95.

Norbert Bröker. 2000. Unordered and non-projective
dependency grammars. Traitement Automatique
des Langues (TAL), 41(1):245–272.

Ralf Debusmann, Denis Duchier, and Geert-Jan. M.
Kruijff. 2001. Extensible dependency grammar:
A new methodology. In Proc. of the COLING
2004 Workshop on Recent Advances in Dependency
Grammar, Geneva.

Michael Dekhtyar and Alexander Dikovsky. 2008.
Generalized categorial dependency grammars. In
Trakhtenbrot/Festschrift, LNCS 4800, pages 230–
255. Springer.

Michael Dekhtyar, Alexander Dikovsky, and Boris
Karlov. 2010. Iterated dependencies and kleene
iteration. In Proc. of the 15th Conference on
Formal Grammar (FG 2010), LNCS, to appear,
Copenhagen, Denmark. [online] http://www.angl.
hu-berlin.de/FG10/fg10_list_of_papers.

Alexander Dikovsky. 2004. Dependencies as cate-
gories. In “Recent Advances in Dependency Gram-
mars”. COLING’04 Workshop, pages 90–97.

Alexander Dikovsky. 2007. Multimodal categorial de-
pendency grammars. In Proc. of the 12th Confer-
ence on Formal Grammar, pages 1–12, Dublin, Ire-
land.

Alexander Dikovsky. 2009. Towards wide coverage
categorial dependency grammars. In Proc. of the
ESSLLI’2009 Workshop on Parsing with Categorial
Grammars. Book of Abstracts, Bordeaux, France.

Häım Gaifman. 1961. Dependency systems and phrase
structure systems. Report p-2315, RAND Corp.
Santa Monica (CA). Published in: Information and
Control, 1965, v. 8, n 3, pp. 304-337.

Maurice Grevisse. 1993. Le bon usage. Grammaire
française. Duculot.

Aravind K. Joshi, Vijay K. Shanker, and David J. Weir.
1991. The convergence of mildly context-sensitive
grammar formalisms. In Foundational issues in nat-
ural language processing, pages 31–81, Cambridge,
MA.

Sylvain Kahane, Alexis Nasr, and Owen Rambow.
1998. Pseudo-projectivity : A polynomially
parsable non-projective dependency grammar. In
Proc. COLING-ACL, pages 646–652, Montreal.

Boris N. Karlov. 2008. Normal forms and automata
for categorial dependency grammars. Vestnik Tver-
skogo Gosudarstvennogo Universiteta (Annals of
Tver State University). Series: Applied Mathemat-
ics, 35 (95):23–43. (in Russ.).

J. Lambek. 1961. On the calculus of syntactic types.
In Roman Jakobson, editor, Structure of languages
and its mathematical aspects, pages 166–178. Amer-
ican Mathematical Society, Providence RI.

J. Lambek. 1999. Type grammars revisited. In Alain
Lecomte, François Lamarche, and Guy Perrier, ed-
itors, Logical aspects of computational linguistics:
Second International Conference, LACL ’97, Nancy,
France, September 22–24, 1997; selected papers, vol-
ume 1582. Springer-Verlag.

Hiroshi Maruyama. 1990. Structural disambiguation
with constraint propagation. In Proc. of 28th ACL
Annual Meeting, pages 31–38.

I. Mel’čuk and L. Iordanskaja. 2000. The no-
tion of surface-syntactic relation revisited (valence-
controlled surface-syntactic relations in french). In
L. L. Iomdin and L. P. Krysin, editors, Slovo v tekste
i v slovare. Sbornik statej k semidesjatiletiju Ju. D.
Apresjana, pages 391–433. Jazyki russkoj kultury,
Moskva.

I. Mel’čuk. 1988. Dependency Syntax. SUNY Press,
Albany, NY.

B. Sagot. 2010. The lefff, a freely available and
large-coverage morphological and syntactic lexicon
for french. In Proceedings of the Seventh conference
on International Language Resources and Evalua-
tion (LREC’10).

Vijay K. Shanker and David J. Weir. 1994. The equiv-
alence of four extensions of context-free grammars.
Mathematical Systems Theory, 27:511–545.

D. Sleator and D. Temperly. 1993. Parsing English
with a Link Grammar. In Proc. IWPT’93, pages
277–291.

Mark Steedman. 1996. Surface structure and interpre-
tation. MIT Press, Cambridge,Massachusetts.

Karel van den Eynde and Piet Mertens. 2003. La va-
lence: l’approche pronominale et son application au
lexique verbal. Journal of French Language Studies,
13:63–104.

271

