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Abstract

We present “CDG LAB”, a toolkit for de-
velopment of dependency grammars and
treebanks. It uses the Categorial Depen-
dency Grammars (CDG) as a formal model
of dependency grammars. CDG are very
expressive. They generate unlimited de-
pendency structures, are analyzed in poly-
nomial time and are conservatively ex-
tendable by regular type expressions with-
out loss of parsing efficiency. Due to
these features, they are well adapted to
definition of large scale grammars. CDG
LAB supports the analysis of correctness
of treebanks developed in parallel with
evolving grammars.

1 Introduction

There are two main technologies of automatic syn-
tactic analysis of natural language:
1. grammatical parsing i.e (symbolic or
statistical or mixed) parsing of a hand-crafted
grammar belonging to a family of formal gram-
mars disposing of a general purpose parser;
2. data-driven parsing, i.e. parsing with
statistical parsers trained over annotated data.
Both technologies need a large amount of expen-
sive expert linguistic data. The hand-crafted wide
coverage grammars are notoriously expensive and
only very few of them have been successfully
realized and applied to unrestricted material (cf.
(Bouma et al., 2000; Riezler et al., 2002)). Be-
sides this, they are prone to explosion of spuri-
ous ambiguity when parsed with general purpose
parsers. On the other hand, training of statisti-
cal parsers needs voluminous high quality tree-
banks such as the Penn Treebank (Marcus et al.,
1993). Training data of this size and quality are
in fact as expensive as the hand-crafted grammars
and also need a long-term hand work. Even if

the results obtained in the statistical parsing dur-
ing the last fifteen years are very encouraging,
their quality and adequacy depends on those of the
hand-crafted annotated data. This is a vital issue
for dependency grammars which suffer from the
shortage of high quality training data. The sev-
eral existing dependency treebanks (DTB) such as
the Prague Dependency Treebank of Czech (Ha-
jicova et al., 1998), the TIGER treebank of Ger-
man (Brants and Hansen, 2002) or the Russian
treebank (Boguslavsky et al., 2000) only partially
solve the problem. First of all, they serve for par-
ticular languages. Secondly, even for these lan-
guages, the DTB use a particular inventory of de-
pendency relations. At the same time, there is no
consensus on such inventories. So the DTB are de-
pendent on the choice of underlying syntactic the-
ories, which makes their reuse problematic. The
translation technologies (cf. (Hockenmaier and
Steedman, 2007)) consisting in acquisition of de-
pendency structures from high quality constituent
structure treebanks also do not resolve the problem
because, for technical reasons, they often flatten
the genuine dependency structures and introduce
into them multiple distortions. For all these rea-
sons, there is a need in efficient and inexpensive
methods and tools of development of wide cover-
age grammars and of training corpora.

Below we present “CDG LAB”, a toolkit sup-
porting parallel development of wide coverage de-
pendency grammars and of DTB. It uses Cate-
gorial Dependency Grammars (CDG) as a formal
model of dependency grammars.

The CDG, a class of first-order type categorial
grammars generating unlimited dependency struc-
tures (DS), were introduced in (Dikovsky, 2004).
Since then, they were intensively studied (e.g.,
see (Dekhtyar and Dikovsky, 2004; Béchet et
al., 2004; Dekhtyar and Dikovsky, 2008; Dekht-
yar et al., 2010; Béchet et al., 2010)). CDG
are very expressive. In particular, very simple
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CDG generate such non-CF languages as L(m) =
{an1an2 ...anm || n ≥ 1} for all m > 0 and MIX =
{w ∈ {a, b, c}+ || |w|a = |w|b = |w|c}. They are
equivalent to real time pushdown automata with
independent counters (Karlov, 2008). Interesting
sufficient conditions of learning CDG in the limit
were found recently (Béchet et al., 2004; Béchet
et al., 2010; Béchet et al., 2011).

CDG also have important advantages which
make them a convenient and natural means of def-
inition of wide coverage dependency grammars.
First, they are completely lexicalized, as it is the
case of all categorial, and more generally, type
logical grammars (Bar-Hillel et al., 1960; Lam-
bek, 1961; Lambek, 1999; Steedman, 1996). Sec-
ond, the CDG types directly encode DS with re-
peatable and unlimited non-projective dependen-
cies (see below). Third, they are parsed in a
polynomial time (Dekhtyar and Dikovsky, 2004;
Dekhtyar and Dikovsky, 2008). Fourth, an exten-
sion of CDG by regular type expressions (RTE)
specially designed for large scale grammars is de-
fined (Dikovsky, 2009; Dikovsky, 2011) and is
implemented in the CDG parser presented below.
Moreover, for this extension there is a supported
by CDG LAB method of incremental bootstrap-
ping of large scale grammars from dependency
structures (Dikovsky, 2011).

The plan of this paper is as follows. Section 2
presents the basics of CDG and of their extension
by RTE. Then the architecture and the main func-
tionalities of CDG LAB are described in Section 3.

2 Categorial Dependency Grammars

CDG define projective DS (as in Fig. 1)
i.e. DS in which dependencies do not cross, and
also non-projective DS, as in Fig. 2, in
which they may cross. In these graphs, the nodes
correspond to the words of the sentence (their
precedence order in the sentence is important)
and the arcs represent the dependencies: named
binary relations on words. Formally, a DS of a
sentence x is a linearly ordered cycle-free graph
with labelled arcs and the words of x as nodes. We
consider connected DS with the root node. When
in a DS D there is an arc w1

d−→ w2, we say
that d is a dependency between w1 and w2, w1 is
the governor and w2 is subordinate to w1

through d. E.g., in is subordinate to was in Fig. 1
and donnée governs la through clit−a−obj and
lui through clit−3d−obj.

Figure 1: Projective DS

(fr. ∗she it[fem.] to him has given)

Figure 2: Non-projective DS

As all categorial grammars, the CDG are com-
pletely lexicalized and may be seen as assignments
of types to words in a dictionary W . CDG types
are expressions of the form

t = [l1\l2\ . . . \H/ . . . /r2/r1]
P .

A type assigned to a word w ∈ W defines
its dependencies in a rather straightforward way:
its subtypes H , l1, l2, . . ., . . . , r2, r1 represent
the claims for w to be related to other words
through projective dependencies and P , called
potential of t, defines all non-projective de-
pendencies of w. The head subtype H , claims
that w should be subordinate to a word through de-
pendency H . When w should be the root of a DS,
H = S (S is a special symbol called axiom). The
left subtypes l1, l2, . . . define the left projective
dependencies of w (i.e. the dependencies through
which w governs the words occurring in the sen-
tence on its left). The right subtypes . . . , r2, r1
define the right projective dependencies of w. For
instance, the projective DS in Fig. 1 is uniquely
defined by the type assignment:
in 7→ [c−copul/prepos−in], the 7→ [det],
Word 7→ [det\pred], beginning 7→
[det\prepos−in], was 7→ [c−copul\S/pred].

Left and right subtypes may also be
iterated. The iterated subtypes define
repeatable dependencies. E.g., li = d∗

means that w may have on it left 0, 1, 2, . . .
occurrences of words subordinate to it through
dependency d. We also use optional subtypes
li = d?. Assignment of type [d?\α] is equivalent
to assignment of [d\α] and [α]. E.g., the DS in
Fig. 3 is defined by the type assignment:
she 7→ [pred], was 7→ [pred\S/a copul∗],
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Figure 3: Iterated dependency

tall, blond, young 7→ [coord−conj?\a copul],
and 7→ [coord−conj].
By the way, the coordination scheme used is this
analysis is more general than the traditional one,
where the coordinated phrase is subordinate to
the conjunction. The new scheme applies to the
traditional recursive definition of coordination as
well as to the iterative one, as in this sentence.

The potential P is the concatenation of so called
polarized valencies of w. The polar-
ized valencies are of four kinds: ↙ v, ↘ v
(negative) and ↖ v, ↗ v positive. E.g., if
a word w has valency ↙ v, this intuitively means
that its governor through dependency v must occur
somewhere on the right. Two polarized valencies
with the same valency name v and orientation, but
with the opposite signs are dual. Together they
define non-projective dependency v. The order of
polarized valencies in the potential P is irrelevant
(so one may choose a standard lexicographic or-
der). For instance, in the DS in Fig. 2, the po-
tential ↖ clit−a−obj ↖ clit−3d−obj of the
participle donnée means that it needs somewhere
on its left a word subordinate through dependency
clit−a−obj and also another word subordinate
through dependency clit−3d−obj. At the same
time, the accusative case clitic la (it[fem.]) has
potential ↙clit−a−obj and the dative case clitic
lui ( to him) has potential ↙ clit−3d−obj. The
proper pairing of their dual valencies with those
of the participle defines two non-projective depen-
dencies between the participle and its cliticized
complements.

We use CDG with non-empty head subtypes.
When a type [α\d/β]P has a negative valency in
its potential P , say P =↙ vP ′, the word w with
this type has two governors: one through v, the
other through d. For such cases we use special
head subtypes d = #(A), called anchors, to ex-
press the adjacency of w to a host word w0. The
anchor dependencies are displayed below the sen-
tence for a better readability. E.g., the DS in Fig. 2
is defined by the following types assignment:

elle 7→ [pred],
la 7→ [#(↙clit−a−obj)]↙clit−a−obj ,
lui 7→ [#(↙clit−3d−obj)]↙clit−3d−obj ,
donnée 7→ [aux−a−d]↖clit−a−obj↖clit−3d−obj ,
a 7→ [#(↙clit−3d−obj)\#(↙clit−a−obj)\pred

\S/aux−a−d].
Due to the anchor subtypes #(↙ clit−3d−obj),
#(↙clit−a−obj) in the type of the auxiliary verb
a (has), it serves as the host verb for both clitics
and also defines their precedence order.

Derivability of DS in CDG is formalized
through the following calculus 1 (with C being a
dependency, H being a dependency or an anchor
and V being a polarized valency):
Ll. HP1 [H\β]P2 ⊢ [β]P1P2

Il. CP1 [C∗\β]P2 ⊢ [C∗\β]P1P2

Ωl. [C∗\β]P ⊢ [β]P

Dl. αP1(↙V )P (↖V )P2 ⊢ αP1PP2 , if the poten-
tial (↙V )P (↖V ) satisfies the following pairing
rule FA (first available):2

FA : P has no occurrences of ↙V,↖V.
Ll is the classical elimination rule. Eliminating
the argument subtype H ̸= #(α) it constructs the
(projective) dependency H and concatenates
the potentials. H = #(α) creates the anchor
dependency. Il derives k > 0 instances of
C. Ωl serves for the case k = 0. Dl creates
non-projective dependencies. It pairs
and eliminates dual valencies with name V satis-
fying the rule FA to create the non-projective de-
pendency V.

Let us see how DS in Fig. 2 can be derived using
the type assignment shown above.

First, we may eliminate the left anchor subtype
#(↙ clit− 3d− obj) in the type of the auxil-
iary verb a using the type of the clitic lui. As a
result, we generate the anchor dependency #(↙
clit−3d−obj) from a to lui and the derived type
of the string lui a becomes
[#(↙clit−a−obj)\pred\S/aux−a−d]↙clit−3d−obj .
In this type, we may eliminate the anchor sub-
type #(↙ clit− a− obj) using the type of the
clitic la. This will generate the anchor dependency
#(↙ clit−a− obj) from a to la. The derived
type of the sequence la lui a is [pred\S/aux−
a− d]↙clit−a−obj↙clit−3d−obj . Now we may elim-
inate the left subtype pred of the derived type
using the type of the subject elle. This gener-
ates the projective dependency from a to elle and

1We show left-oriented rules. The right-oriented rules are
symmetrical.

2Cf. a different pairing rule mentioned below.
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Figure 4: Architecture of the CDG parser

elle la lui a obtains the derived type [S/aux−
a− d]↙clit−a−obj↙clit−3d−obj . Then using the type
of the participle donnée, we may eliminate the
right subtype of this type. This generates the
projective dependency aux − a − d from a to
donnée and assigns to the sentence the derived
type [S]↙clit−a−obj↙clit−3d−obj↖clit−a−obj↖clit−3d−obj .
Application of the rule FA to the dual valencies
↙ clit−3d−obj and ↖ clit−3d−obj generates
the non-projective dependency clit−3d−obj from
donnée to lui and derives for the sentence the type
[S]↙clit−a−obj↖clit−a−obj . Finally, applying this rule
to the dual valencies ↙clit−a−obj ↖clit−a−obj
we generate the DS in Fig. 2 because the non-
projective dependency clit−a−obj from donnée
to la is generated and the derived type is S.

Extended CDG. CDG is a theoretical model
not adapted to wide coverage grammars. Wide
coverage grammars face a combinatorial explo-
sion of spurious ambiguity and many other hard
problems, e.g. those of compound lexical entries
including complex numbers, compound terms,
proper names, etc. and also that of flexible prece-
dence order. (Dikovsky, 2009) proposes an exten-
sion of CDG adapted to wide coverage grammars.

The extended CDG use classes of words in the
place of words and use restricted regular expres-
sions defining sets of types in the place of types.
I.e., the dictionary W is covered by classes:
W =

∪
i∈I

Ci and the lexicon λ assigns sets of reg-

ular expressions to classes. At that:
- all words in a class C share the types defined

by the expressions assigned to C,
- every word has all types of the classes to which

it belongs.

The extended CDG use flat (i.e. bounded depth)
regular type expressions (RTE). In
these expressions, C,Ci are dependency names
or anchors, B is a primitive type, i.e. a
dependency name, or an anchor or an iterated or
optional type, and H is a choice.
Choice: (C1| . . . |Ck). (C) = C.
Optional choice: (C1| . . . |Ck)?. (C)? = C?.
Iteration: (C1| . . . |Ck)

∗. (C)∗ = C∗.
Dispersed subtypes expressing flexible order.

Left: [{α1, B, α2}\α\H/β]P .
Right: [α\H/β/{α1, B, α2}]P .
Two-way: {α1, B, α2}[α\H/β]P .

Intuitively, the choice unites several alternative
types into one. When iterated, it represents all se-
quences of the elements of the choice occurring
in the same argument position. On the contrary,
assignment of the type [{α1, B, α2}\α\H/β]P

to a word w means that a word subordinate to
w through projective dependency B is some-
where on its left. E.g. the assignments w0 7→
[{d}\b\a\S], w1 7→ [a], w2 7→ [b], w3 7→ [d]
define DS of sentences: w3w1w2w0, w1w3w2w0,

w1w2w3w0 in which w0
d−→ w3, w0

a−→ w1

and w0
b−→ w2. The right dispersed RTE is sim-

ilar. The two-way dispersed RTE claims that an
element of type B were found in some left or right
position.

As the original CDG, the extended CDG are for-
malized by a calculus wich has special rules for
every kind of RTE (see (Dikovsky, 2009; Béchet
et al., 2010; Béchet et al., 2011)). A fragment of
this calculus may be seen in (Dikovsky, 2011) (see
this vomume).

Classes and RTE do not extend the expressive
power of CDG. At the same time, they dramat-
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ically reduce the grammar size. Due to the ex-
tended type calculus they can be parsed directly,
without unfolding. In fact, the polynomial time
parsing algorithm of (Dekhtyar and Dikovsky,
2008) can be adapted to the extended CDG.

3 CDG LAB

CDG LAB is a kit of tools supporting parsing with
extended CDG, development and maintainance
of dependency treebanks (DTB) and development
and test of large scale extended CDG. The core el-
ement of CDG LAB is the parser of the extended
CDG implemented in Steel Bank Common Lisp.
Recently was issued its version 3.1 (below we will
call this parser Parser-3.1).

All input and output data of Parser-3.1 are
XML-structures. It may analyse sentences, text
corpora and DTB either with an extended CDG in-
tegrated with an external morpho-syntactic dictio-
nary (lexical base grammar) or only with
the internal grammar lexicon (text grammar).
For instance, for French is developed a large scale
extended CDG (Dikovsky, 2011). Its version 3.2
(called below “French Text CDG”) is integrated
with the open MS-dictionary of French Lefff 3.0
(Sagot, 2010) containing 536,375 lexical units
(LU). Lefff is kept in object-relational database
PostgreSQL and a correspondence between the
classes of the French Text CDG and the categories
of Lefff is implemented through several hundreds
of SQL queries. The integral grammar is called
below “French LB CDG”.

Modes of Analysis. Parser-3.1 is multi-purpose.
It is used for semi-automatic analysis by consec-
utive approximations and also starting from head
type/class selection, for estimation of compatibilty
of analyses with an updated grammar and for ex-
pert annotation of DS needed for this estimation,
for automatic re-analysis of sentences when the
annotation is changed and also for autonomous
syntactic analysis. Respectively, the parser is used
in different modes:
- analysis by head selection,
- analysis by approximations,
- DS analysis,
- autonomous analysis.
Fig. 4 shows a scheme of functioning of Parser-3.1
in these modes. Sentences are introduced through
the input form (see Fig. 5). Through this form, the
User may set various parameters, e.g. the maxi-
mal parsing time, the maximal number of DS to re-

Figure 5: Query Form

turn, a graphical representation of DS, a language
register (corresponding to specific choices of non-
projective dependencies common to official docu-
ments or to scientific or literary prose, to period-
icals or to the spoken language), etc. The input
sentence is lexically analysed. Composite forms
are decomposed into separate tokens, as in the
case of l′homme (the man), which is segmented
into three tokens: l, ′ and homme, for which are
found in the lexicon all possible lemmas. In this
example, the association is ambiguous: l′ may
be a clitic or a determiner. All possible variants
of composite LU are detected (in particular, com-
plex numbers and names recognized through reg-
ular expressions, multi-word LU, such as à la (of
the kind), à travers (through) etc.) and unknown
terms are identified. The transitions to and from
head selection form are followed only in the mode
of Analysis by head selection. Functioning in the
mode of Analysis by approximations is iterative. It
goes round result reporting and passes from anno-
tation interface directly to lexicon loading. Other
transitions are common for all modes. So we com-
ment them in the head selection mode.

Analysis by Head Selection. In this mode a
selection form is proposed (see Fig. 6), in
which the User may select the proper composite
LU (if and when several possibilities are detected)
and for every LU, to select one of possible classes
and one of possible dependency relation groups
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Figure 6: Selection Form

(or of their elements). The selected dependency
is nothing but the head subtype of the possible
types of the LU. The latter selection is in fact de-
cisive. It corresponds to the strong constraint that
the LU is subordinate through the selected depen-
dency (or limits the choice of such dependencies
to the elements of the selected group).

This selection drastically limits the search-
space. As it concerns the Parser-3.1 and the
French LB CDG, it reduces the number of possible
analyses by two-three orders of magnitude, i.e. in
the place of a thousand of possible DS only about
ten are found, most often differing between them
in positions of repeatable dependencies (such as
modif (modifier), attr (attribute) or circ
(circumstantial). E.g., in this example the
genuine DS will be immediately found due to this
selection (see Fig. 7).

Then is created the sentence’s workspace (WS),
an XML-structure representing the subgrammar
corresponding to all detected LU to which are af-
fected the classes, the types and the features’ val-
ues compatible with the pre-selection. After this
follow the steps common to all modes. First, all
possible projective (and anchor) dependencies are
computed and registered in the triangular matrix
. This computation is done by an CKY-like al-

Figure 7: Resulting DS

gorithm adapted to extended CDG. Then all pos-
sible pairings of dual valencies providing non-
projective dependencies are independently com-
puted and registered in the resulting matrix (more
precisely, in the submatrix in which the axiom S
can be proved). It should be noted that the pairing
principle may be chosen for a CDG and for a par-
ticular non-projective dependency. By default, this
is the FA rule. But in rare exceptional situations,
such as that of unlimited cross-serial dependen-
cies in subordinate clauses in Dutch, one may use
a different rule FC (first cross) defined in
(Dikovsky, 2007). This independence of compu-
tations of projective and non-projective dependen-
cies is founded on the fundamental projection
independence property of CDG proved
for the rule FA in (Dekhtyar and Dikovsky, 2004;
Dekhtyar and Dikovsky, 2008) and for rule FC in
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Figure 8: Incorrect DS

(Dikovsky, 2007). Till the end of this step the pars-
ing algorithm is polynomial. The resulting trian-
gular matrix is in fact a packed chart from which it
is possible to enumerate all possible DS of the sen-
tence. Given that the number of these DS may be
exponential with respect to the size of the matrix,
the next step is exponential in space in the worst
case. In this step, the DS are generated from the
matrix in a certain order and the feature values are
assigned to LU in every generated DS. Finally, the
parser generates the HTML report page, which in-
cludes various useful statistics. An XML structure
representation of every DS including all necessary
information, in particular the CDG classes and the
feature values is also generated and saved to be
used by other programs.

Analysis by Approximations. This important
mode represents another User-guided strategy of
parsing. It allows to find the needed DS start-
ing from any obtained DS by consecutive approx-
imations computed from User’s annotations in the
DS. There are three possible annotations of de-
pendency relations: positive, negative and
neutral. The positively annotated dependen-
cies are those adequate. They will be kept dur-
ing the whole sequence of approximations (if not
discarded). The neutrally annotated dependencies
are kept till they are compatible with the positively
annotated ones. The negatively annotated depen-
dencies are to be eliminated from the DS. When
used in this mode, the Parser computes for every
DS the total number of positively annotated de-
pendencies and that of negatively annotated de-
pendencies. The obtained DS are sorted first by
the negative annotations’ weight (the less negative
annotations the better) then by the positive anno-
tations’ weight (the more positive annotations the
better).

Suppose, that the approximations
start from the (partially incorrect) DS
of the sentence Ève la lui a donnée

Figure 9: First annotated DS

Figure 10: Next approximation

(Eve it[fem.] to him has given) shown in
Fig. 8. There are only two correct dependencies
in this DS: the predicative one: pred and the
punctuation dependency @fs. We annotate both
positively (this annotation being displayed by
boldface arcs). The other three dependencies
appos, clit−3d−obj and a−obj are erroneous.
We annotate them as negative (which is displayed
by broken arcs). So we obtain the first annotated
DS shown in Fig. 9.

From this annotated DS, the Parser computes
the next approximation shown in Fig. 10, which is
also incorrect. It has the same two correct depen-
dencies and three other incorrect: p−obj, p−aggr
and circ. We annotate the three as negative, as it
is shown in Fig. 10.

Figure 11: Final approximation
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From this annotated DS, the parser finally com-
putes the right one shown in Fig. 11. Not only this
final approximation is correct, but it is also anno-
tated as such. This difference is very important
for the other mode of use of Parser-3.1, that of DS
analysis.

DS, DTB and Grammar Analysis. In fact,
Parser-3.1 considers every DS as annotated. The
case where there are no annotations is consid-
ered as that with weight 0. Moreover, not only
the dependencies, but also the LU may be anno-
tated. The LU may have only two annotations:
positive and neutral. Annotating a LU w
positively is equivalent to positively annotate all
dependencies in the sub-structure with the root w.
This is seen in Fig 11, were the positive annota-
tion of the root (displayed in a contrasting color)
implies the positive annotations of dependencies
(displayed in boldface). More than that, the class
and the feature values assigned to every LU in DS
may also be annotated as positive, negative
or neutral. In the fragment of the class/feature
table shown in Fig 11, one may see that not only
the dependencies, but also the class/feature assign-
ments for its LU are all annotated as positive. So
this analysis is 100% correct. It is using this in-
tegral annotation weight, that Parser-3.1 evaluates
the DS. Now, for two DS of the same sentence,
it is possible to measure the difference of their
weights. This simple measure turns out to be an ef-
ficient means of analysis of DTB and of the CDG
used while their development. Every sentence pro-
cessed by Parser-3.1 using French LB CDG ob-
tains its status. The status includes the analy-
sis result (‘NO’, when there are no parses, ‘YES’
otherwise) and for a parsable sentence, also the
maximal number of returned DS and the differ-
ence (in percents) of annotation weights (of de-
pendencies and of LU) between the best obtained
DS and the one present in the DTB (if any) be-
fore this sentence processing. When the grammar
is updated, the DS of sentences in the DTB be-
come potentially irrelevant. For this case, Parser-
3.1 has a special function of re-parsing of a
DTB, which computes the difference between the
DS before and after update, comparing their sta-
tuses. The User may choose between keeping or
not the same head subtypes while re-parsing. Us-
ing this function, one may easily find all sentences
to be revised.

Another way round, this test applies to the

Figure 12: Re-parse results

grammar itself. The French Text CDG was cre-
ated using the Structural Bootstrapping Method
(Dikovsky, 2011), a method specific to the ex-
tended CDG and consisting in an incremental
transformation of DS of a sample of sentences σ
into an extended CDG G(σ) generating these sen-
tences. The incrementality is interpreted in the
strong sense: ∆(G(σ)) ⊆ ∆(G(σ ∪ {s})) for ev-
ery new sentence s. So such transformations rep-
resent monotone grammar updates. Basically, the
bootstrapping of French Text CDG was incremen-
tal in this sense, except three important revisions
which were not. Taking in mind the size and the
complexity of this grammar (it consists of more
than 3120 RTE distributed between 185 lexicon
classes, has 84 projective and 20 non-projective
dependencies), it was a very hard task to find all
sentences in the sample wrongly analysed using
the updated grammar. Indeed, to find them, it
was necessary to look through thousands of DS
of hundreds of sentences in order to find linguisti-
cally adequate DS (the simple existence of a gen-
erated DS is of course not sufficient). The situa-
tion has completely changed after the implemen-
tation of Parser-3.1. Indeed, now all sentences in
the sample are initially annotated. The procedure
of re-parsing of the sample finds all inconsisten-
cies. When a DS is compatible with the grammar
before update (i.e. has 100 % correct annotations)
and becomes incompatible after the update, then
the dependencies with changed weight of annota-
tion correctness indicate (together with the word
classes) the RTE of the grammar to be updated.

In Fig. 12 we show a fragment of the table
representing the results of re-parsing applied to a
DTB. In this table:
- the first column is the reference to the DS of a
sentence,
- the second column shows the (folded) character-
istics of parsing complexity,
- in the third column, ‘OK’ means that all LU of
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the sentence are present in the grammar lexicon
and ‘DEFAULT’ means that there is at least one
LU absent in the lexicon and replaced by the de-
fault unit,
- in the fourth column, ‘YES’ means that the re-
parsing was successful in the sense that a success-
ful analysis was found and ‘NO’ means the con-
trary,
- in the fifth column is given the maximal number
of DS requested for re-parsing (≥ k means that
there are at least k requested DS),
- the sixth column shows the part (in percents) of
annotation status coincidence of the DS before and
after the update (so it is 0% for new sentences).

Autonomous Analysis. This is the mode of non-
User-guided analysis. Parser-3.1 may be used as a
general purpose parser for the extended CDG. In
CDG LAB, there is a possibility to upload one’s
own grammar or to introduce it through the Sand-
box. Parser -3.1 is not well adapted to parsing
with the grammars of such size and as amiguous
as French LB CDG. For instance, it passed 2373
seconds when applied to a test set of 559 French
sentences of various complexity, repesenting the
majority of French syntactic constructions. In so
doing, it failed on 157 sentences exceeding the
time limit of 10 seconds and successfully analysed
the other 402 sentences. To compare: in the re-
parsing mode, Parser -3.1 successfully analysed in
175 seconds 1442 DS of sentences, some of which
are extremely long (up to 73 words). Another
problem with Parser-3.1 is that it generates the DS
not in the order of their adequacy. With ambiguous
CDG, such as French LB, it generates hundreds of
spurious structures per sentence. So for very long
and complex sentences, it is practically impossible
to know whether an adequate DS was computed.
This is why we consider Parser-3.1 as a tool of de-
velopment of DTB using head subtype selection,
approximations and re-parsing. In these modes
it performs very well and doesn’t impose any
length limits on sentences. A higher-performing
autonomous mixed stochastic-symbolic parser of
extended CDG is under design.

DTB Development. The annotation based de-
velopment of DTB in CDG LAB leads to a no-
table change in the point of view on the quality
of treebanks. It is now the grammar, implement-
ing a set of linguistic subjective expert knowledge,
which will serve as the “gold standard”. As to the

DTB, they should all be correct with respect to the
grammar and should be tested for correctness af-
ter every non-monotone grammar update. By def-
inition, the monotone grammar updates preserve
correctness of DS.

Besides the means based on DS annotation,
CDG LAB also has rather standard means for cre-
ation and updates of DTB and for search of DS by
projective and non-projective dependency names
and by LU in the sentences.

Grammar Development. Besides the described
above general purpose means supporting non-
monotone grammar updates, CDG LAB has some
means specific for CDG of French integrated with
Lefff 3.0. In particular, it has several functions
for completion of the lexicon of these CDG. Ba-
sically, there are two problems: the first is to au-
tomatically complete the lexicon by all forms of
a missing word (this concerns mainly the verbs),
the second is to compute the government pattern
of a missing word from that of a present word. For
the former problem, CDG LAB has several func-
tions based on updates of the lexicon of French
Text CDG. The latter problem mainly concerns the
deverbals. The work on completions of this kind
is in progress.

4 Conclusion

CDG LAB combines several means of incre-
mental parallel development of wide coverage
dependency grammars and of dependency tree-
banks provably correct with respect to the gram-
mars. These means were successfully tested in the
course of development of a wide coverage cate-
gorial dependency grammar of French and of an
experimental dependency treebank. Some of these
means are general purpose. E.g., the annotation
weight difference test applies to any kind of struc-
tural incremental development based on expert an-
notations. Some other, such as head subtype se-
lection and consecutive approximations, may be
used with other classes of dependency grammars
and may be implemented in tabular dependency
grammar parsers. Some means are specific to the
Parser-3.1 and to the French CDG integrated with
Lefff. Several important means of CDG LAB are
still under construction, but even this experimental
version has proved its high efficiency.
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